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1  | INTRODUC TION

Fluorine is widely dispersed in nature, almost entirely in the form 
of fluorides. In some locations, such as some areas of China, India, 
and Bengal, the drinking water contains dangerously high levels of 
fluoride (>1.2 mg/L), leading to serious health problems. Fluoride 
can be present in tea leaves, following absorption from soil and 
water. The mature leaves contain as much as ten to 20 times the 
fluoride levels of young leaves from the same plant.1 When the 
tea leaves are soaked in water, the fluoride in tea leaves can also 
be taken up by the body. In some areas where brick tea is heav‐
ily consumed, the intake of fluoride via tea can be several times 
greater. In addition, in some provinces of China, there is the habit 
of burning bituminous coal, which has a high fluoride content, 
to cook, and dry food. With exposure to atmospheric pollution 
derived from burning these fossil fuels over a long period, fluo‐
ride absorbed through the respiratory and digestive tracts also 

increases significantly. Ingestion of excessive amounts of fluoride 
can cause damage to various bodily systems or organs. The major 
clinical manifestations are presented as dental fluorosis, skeletal 
fluorosis and other symptoms in non‐skeletal tissue caused by ex‐
cessive accumulation of fluoride.

Since the main manifestations of fluorosis are dental and skel‐
etal fluorosis, researchers have long focused on the pathology 
of bone and tooth tissues. In the past 5 years, new progress has 
been made in research into the pathogenesis of dental and skeletal 
fluorosis. In addition, researchers have begun to pay more atten‐
tion to the effects of fluoride on other organs and systems in the 
body. The largest body of research in recent years has investigated 
the mechanism of action of fluoride on non‐skeletal tissue. The 
Conference of the International Society for Fluoride Research is 
organized by the International Society for Fluoride Research and 
represents the latest advances in international fluoride research. 
The 33rd Conference of the International Society for Fluoride 
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Abstract
Fluorine is one of the trace elements necessary for health. It has many physiological 
functions, and participates in normal metabolism. However, fluorine has paradoxical 
effects on the body. Many studies have shown that tissues and organs of humans and 
animals appear to suffer different degrees of damage after long‐term direct or indi‐
rect exposure to more fluoride than required to meet the physiological demand. 
Although the aetiology of endemic fluorosis is clear, its specific pathogenesis is in‐
conclusive. In the past 5 years, many researchers have conducted in‐depth studies 
into the pathogenesis of endemic fluorosis. Research in the areas of fluoride‐induced 
stress pathways, signalling pathways and apoptosis has provided further extensive 
knowledge at the molecular and genetic level. In this article, we summarize the main 
results.
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Research, held in India in 2016, focused on the pathogenesis of 
fluorosis at the molecular and genetic level. It not only explores the 
molecular mechanism of fluoride action in bone tissue damage, but 
also the toxic effects of fluoride on non‐skeletal tissues, such as 
the nervous system, cardiovascular system, liver, kidney, reproduc‐
tive system, thyroid and the progeny effect of fluoride. Therefore, 
in this article, we will review research work from the last five years 
from the perspective of the effects of fluoride on different tissues 
and organs of the body. The key words for pathogenesis of en‐
demic fluorosis in the last 5 years are shown in Figure 1.

2  | MECHANISM OF AC TION OF 
FLUORIDE ON BONE AND TOOTH TISSUES

2.1 | The pathogenesis of dental fluorosis

Dental fluorosis is the earliest specific clinical manifestation of en‐
demic fluorosis. The pathological changes mainly occur in enamel, 
but dentin and cementum are also involved. In recent years, research 

into the pathogenesis mainly focused on fluoride interference with 
protein secretion of ameloblasts, resulting in amelogenin hydrolysis 
and removal delay, and differences in susceptibility to fluoride due 
to individual genotypes.

2.1.1 | Effects of fluoride on the signalling 
pathway of ameloblasts

Development of the tooth germ involves the process of amelo‐
blast and odontoblast differentiation, leading to tooth hard tis‐
sue formation. Fluoride may cause disordered protein synthesis 
by affecting the function of the endoplasmic reticulum in amelo‐
blasts. Recent studies found that fluoride can cause glucose‐
regulated protein78 up‐regulation in ameloblasts,2 and activate 
inositol‐requiring kinase 1α and transcription factor 6 pathway 
in unfolded protein reactions,3 thereby interfering with the se‐
cretory function of ameloblasts, resulting in the development 
of dental fluorosis. Oxidative stress is also related to the occur‐
rence of dental fluorosis. Excessive fluoride can induce oxidative 

F I G U R E  1   The key words for pathogenesis of endemic fluorosis in the last 5 years. From the perspective of the effects of fluoride on 
different tissues and organs of the body, research work from the last five years has mainly focused on effects at the molecular and genetic 
levels, such as fluoride‐induced stress pathways, signalling pathways and apoptosis
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stress in ameloblasts,4 and the fluoride‐induced reactive oxygen 
species (ROS) production causes oxidative damage to mitochon‐
dria and DNA,5 leading to activation of SIRT1/autophagy via 
ROS‐mediated JNK signalling. In addition, excessive fluoride can 
induce apoptosis of ameloblasts. The expression of and CHOP2 
in ameloblasts increases with the increase of fluoride concentra‐
tion. It is speculated that apoptosis induced by the endoplasmic 
reticulum stress pathway may play a role in the occurrence of 
dental fluorosis. High‐fluoride partially activates the FasL,6 p‐
ERK and p‐JNK signalling pathways7 of ameloblasts, leading to 
increased expression of apoptotic genes, indicating that oxida‐
tive stress is closely associated with apoptosis in dental fluorosis. 
Fluoride can also induce apoptosis by increasing the phagocytic 
activity of mature ameloblasts, and the Bcl‐2 signalling pathway 
is involved in this process.8 Furthermore, there is evidence that 
autophagy is involved in dental fluorosis.4 One study9 observed 
that fluoride increased expression of Beclin1, which is required 
for autophagosome formation, and decreased the expression of 
mTOR, an autophagy‐related complex, indicating that autophagy 
is involved in dental fluorosis.

2.1.2 | Relationship between dental fluorosis and 
genetic polymorphism

In recent years, different individuals with genotypes susceptible 
to fluoride began to attract the attention of researchers. In the 
same population with the same fluoride exposure levels, there is a 
large difference in the extent of dental fluorosis between individ‐
uals, which may be related to genetic background and individual 
susceptibility to fluoride. The site Alu I CT + TT of the calcitonin 
receptor (CTR) is a susceptible genotype in populations with 
coal‐burning type fluorosis. The polymorphism of the CTR gene 
may affect ion metabolism during tooth mineralization, resulting 
in differences in the occurrence of dental fluorosis at the same 
fluoride level.10 Some studies have also shown a relationship be‐
tween different loci of the same gene and dental fluorosis. Ten 
years ago, a case‐control study showed a possible association be‐
tween polymorphisms (Pvu II and Rsa I) in the COL1A2 gene and 
dental fluorosis in high fluoride‐exposed populations.11 However, 
recently, a cross‐sectional study showed that the presence of an 
A/C polymorphism in the COL1A2 gene was not associated with 
the severity of dental fluorosis in drinking water‐type fluorosis.12 
Another study showed that the polymorphisms in the enamel ma‐
trix genes AMBN, TFIP11, and TUFT1 were associated with dental 
fluorosis.13

2.2 | The pathogenesis of skeletal fluorosis

Skeletal fluorosis includes osteosclerosis, osteomalacia, osteoporo‐
sis, ossification of peri‐osseous soft tissue and degenerative changes 
of cartilage and joints. Active osteogenesis and accelerated bone 
turnover are important features of skeletal fluorosis progression and 
the pathological basis of the diversity of osteogenic lesions. In recent 

years, studies of the pathogenesis of skeletal fluorosis have focused 
on the various cell regulatory mechanisms by which fluoride affects 
the process of bone turnover.

2.2.1 | Effects of fluoride on osteoblasts

Bone lesions caused by fluoride are complex and diverse, and af‐
fect a variety of cells involved in bone turnover. Among them, the 
aberrant activation of osteoblasts in the early stage plays a critical 
role. In recent years, a series of studies on the proliferation and 
differentiation of osteoblasts stimulated by fluoride have found 
that the BMP/Smad signalling pathway14 and the Wnt and notch 
pathways15 in osteoblasts may be involved. In addition, skeletal 
fluorosis is closely related to endoplasmic reticulum stress and 
oxidative stress. Fluoride induces the endoplasmic reticulum 
stress response of osteoblasts, then endoplasmic reticulum stress 
response unfolded proteins are involved in osteoblast differen‐
tiation.16,17 The protein kinase RNA (PKR)‐like ER kinase (PERK) 
pathway is associated with fluoride‐induced bone formation and 
bone resorption.18 Another study shows that fluoride‐induced 
osteoblast apoptosis may be regulated through ROS levels and 
mitochondrial membrane potentials.19 In addition, fluoride can af‐
fect hormone levels, thereby contributing to active bone turno‐
ver. Studies have shown that increased secretion of parathyroid 
hormone (PTH) plays an important role in the pathogenesis of 
fluoride‐induced osteogenesis and accelerated bone turnover,20 
and that PTH participates in the process of fluoride modulation 
of SOST/Sclerostin and RANKL expression.21 Another study con‐
firmed that insulin not only stimulates the activity of osteoblasts, 
but also enhances the role of fluoride in stimulating osteoblast 
activity.22

2.2.2 | Effect of fluoride on osteoclasts

One of the pathological changes of skeletal fluorosis is the de‐
velopment of osteoporosis and osteopetrosis. In the develop‐
ment of skeletal fluorosis, the active function and absorption of 
osteoclasts plays an important role in the pathogenesis of os‐
teoporosis. One report elucidated that the transforming growth 
factor (TGF) beta receptor 1/Smad3 pathway participated in the 
mechanism of biphasic modulation of osteoclast mode, regu‐
lated by fluoride.23 RANKL is necessary for osteoclast formation. 
Excessive fluoride exposure can stimulate osteoblasts to secrete 
RANKL,24 and the effect of fluoride on osteoclasts differs under 
different concentrations of RANKL. Fluoride also regulates the 
expression of nuclear factor of active T cells (NFAT) c1 in osteo‐
clasts. In vitro studies have shown that fluoride can reduce the 
activity of osteoclasts by inhibiting the expression of NFATc1 and 
downstream genes,25 but the specific mechanism remains to be 
further studied. The ratio of osteoprotegerin ligand (OPGL) to 
osteoprotegerin (OPG) can accurately regulate the balance be‐
tween bone resorption and synthesis. In a study of fluorosis in 
rats, it was found that OPG and OPGL may play important roles in 
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skeletal fluorosis, and fluoride may enhance osteoclast formation 
and induce osteoblastic destruction.23

2.2.3 | Effect of fluoride on chondrocytes and 
cellular matrix in bone and cartilage

Excessive fluoride interferes with bone metabolism partly by af‐
fecting the extracellular matrix of bone tissue. Osteoblasts are ac‐
tive but form immature woven bone in fluorosis. The structure and 
arrangement of collagen obviously differ from those of mature la‐
mellar bone. Collagen is one of the important components of bone 
and cartilage tissue, with type I collagen being the main type of 
collagen in bone tissue, while in cartilage the main type is type 
II collagen. Excessive fluoride can cause metabolic abnormalities 
of bone and cartilage collagen. Studies have shown that excess 
fluoride can cause type I collagen disorder, leading to changes in 
the ultrastructure of bone tissue.26 Another study showed that 
NaF decreases the secretion of chondrocyte type II collagen in 
primary cultured rat chondrocytes, possibly through the down‐
regulation of HIF‐1α via the Sox9 pathway.27 Excessive fluoride 
affects the function of osteoclasts and promotes the secretion of 
some lysosomal enzymes by osteoclasts, mainly acid and matrix 
metalloproteinases (MMPs) which promote the degradation of ma‐
trix and accelerate the process of bone turnover. In a study of the 
effects of fluoride on RANKL‐induced osteoclast differentiation, 
we found that MMP9 and cathepsin K can be used as indicators of 
changes in bone resorption activity and fluoride exposure.28

2.2.4 | Genetic polymorphisms, Epigenetic 
changes and skeletal fluorosis

The role of individual differences in the pathogenesis of skeletal 
fluorosis has drawn the attention of researchers in recent years. It 
was noticed that even in cases involving similar doses of fluoride 
exposure, different ethnic groups showed differences in the inci‐
dence of skeletal fluorosis,29 suggesting that human genes play an 
important role in the pathogenesis of endemic fluorosis. A popula‐
tion‐based study showed that polymorphism of the glutathione S‐
transfected P1 rs1695 gene was associated with the prevalence of 
tea‐type skeletal fluorosis.30 In the Tibetan population, those with 
the G allele have a reduced risk of skeletal fluorosis. Another study 
showed that polymorphism of the myeloperoxidase gene was re‐
lated to fluorosis in adults living in the coal‐burning endemic fluo‐
rosis area in Guizhou, China.31 These results suggest that genetic 
polymorphism may play an important role in the pathogenesis of 
fluorosis.

The role of histone modification in the pathogenesis of skeletal 
fluorosis has been investigated. The result shows that fluoride‐in‐
duced hyper H3K9 tri‐methylation‐mediated repression of TGFBR2 
and Smad3 was related to the development of skeletal fluorosis.32 
Preliminary exploration of the relationship between the epigenetic 
changes and skeletal fluorosis provides a new perspective for the 
study of the pathogenesis of skeletal fluorosis.

3  | MECHANISM OF AC TION OF 
FLUORIDE ON NON‐SKELETAL TISSUES

Fluorosis can cause varying degrees of extensive non‐skeletal dam‐
age, with obvious diversity, and the specific mechanism varies. The 
common features are mostly degenerative changes in parenchymal 
cells without significant inflammatory response. In addition to the 
effects of super‐large doses, which can lead to obvious cell necro‐
sis, in most cases increased apoptosis is observed. Most recent re‐
search suggests that the main regulatory mechanisms of the body, 
such as metabolism, stress and apoptosis, may all be changed to 
some extent under the influence of a certain concentration of fluo‐
ride. Excessive fluoride can cause oxidative stress and promote ap‐
optosis of non‐bone tissue which is the current focus of research.

3.1 | Effect of fluoride on the nervous system

Fluoride, like other halogen elements, can penetrate into the brain 
through the blood‐brain barrier. In recent years, the action of fluo‐
ride on the nervous system has attracted attention. Exposure to high 
levels of fluoride in water was found to be significantly associated 
with reduced levels of intelligence in children.33 Catechol‐O‐meth‐
yltransferase (COMT) gene polymorphisms may be related to the IQ 
of children exposed to fluoride in drinking water.34 Another study 
showed that high fluoride exposure may be a risk factor for cognitive 
dysfunction of the elderly over the age of 60 in drinking water‐type 
fluorosis areas where drinking water‐type fluorosis is endemic.35 
Based on the results of the population survey, animal experiments 
in recent years have also focused on the study of the hippocampus 
which is responsible for learning and memory functions, since it is 
known that fluoride can damage the morphology of the hippocam‐
pus.36,37 Fluoride also significantly changed hippocampal structural 
parameters of offspring after mothers were exposed to water fluo‐
rosis.38 Excessive fluoride can lead to increased production of nitric 
oxide and JNK signalling pathway activation,39 cerebral cortex nerve 
cell and synaptic redistribution,40 and abnormal accumulation of in‐
tracellular calcium.41 Sodium fluoride induced oxidative stress and 
also behavioural alteration in rat, and decreased levels of vitamin 
A can be used as a marker in fluoride‐induced toxicity studies.42 A 
recent study43 showed that neuronal destruction and synaptic injury 
caused by chronic fluorosis involve excitotoxicity. In addition, peri‐
natal fluoride exposure can impair learning and memory in mouse 
offspring, possibly partly as a result of enhanced levels of miR‐124 
and miR‐132 and alterations of their target genes.44 Another arti‐
cle45 showed that maternal fluoride exposure during gestation and 
lactation can influence the learning, memory ability and glutamate 
receptor expressions of the offspring.

3.2 | Effects of fluoride on the 
cardiovascular system

The vascular wall is rich in collagen fibres, and collagen fibres are one 
of the major sites of action of fluoride. An epidemiological study in 
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an endemic fluorosis area showed that excess fluoride intake has a 
certain connection with the incidence of adult hypertension, carotid 
atherosclerosis and the degree of disease lesions. The mechanism 
may be related to elevated levels of endothelin 1 in plasma caused 
by fluoride46 and leads to inflammation of the oxidative stress sys‐
tem and endothelial activation.47 The PI3K/AKT/eNOS pathway also 
plays a crucial role in the reduced expression of NO caused by ex‐
cessive fluoride exposure.48 Based on these results, we speculated 
that fluoride may be involved in cardiovascular disease by causing 
damage to the vascular wall and myocardial injury, but its specific 
mechanism needs further study.

3.3 | Effects of fluoride on the liver and kidney

Both liver and kidneys play important roles in the metabolism of 
fluoride in the body. Excessive intake of fluoride can affect liver 

function and kidney function, and cause pathological changes in liver 
and kidney tissues. In recent years, many scholars have explored the 
effects of fluoride on the liver and kidneys.

Fluoride has hepatotoxic effects. Fluoride can cause mouse 
liver dysfunction,49 induce morphological changes,50,51 significantly 
increase hepatocyte apoptosis, promote the relative expression of 
caspase‐3 and caspase‐9 proteins and cause DNA damage51,52 in 
the liver. Fluoride also can disturb lipid metabolism,53 cause the liver 
oxidative stress response,52,54 and activate the PI3K‐Akt signalling 
pathway55 to participate in the pathogenesis of liver injury caused 
by fluorosis.

Renal pathological studies56,57 have shown varying degrees of 
fluoride‐associated damage to the architecture of tubular epithelia, 
endothelial cells and of the mesangial cells of the renal glomerulus. 
Excessive intake of fluoride has been shown to alter the renal func‐
tion parameters, and oxidative stress50,58 and the NF‐κB signalling 

F I G U R E  2   Common alterations in fluorosis‐apoptosis. Caspases, a family of cysteine proteases, are the central regulators of apoptosis. 
FasL can activate initiator caspases (Pro‐caspase 8 and 10), then cleave and activate the effector caspases 3, 6 and 7, leading to apoptosis. 
Fluoride exposure can activate these signalling pathways and induce apoptosis. In addition, excessive fluoride induces stress pathways such as 
oxidative stress and endoplasmic reticulum stress, thus promoting apoptosis. Many signalling pathways such as Erk1/2 and PI3K/Akt induce 
anti‐apoptotic Bcl‐2 family members. These Bcl‐2 family members protect the integrity of mitochondria, preventing Cytochrome C release and 
the subsequent activation of caspase‐9. TNF‐α may activate both pro‐apoptotic and anti‐apoptotic pathways. TNF‐α can induce apoptosis by 
activating caspase 8 and 10, but can also inhibit apoptosis via NF‐κB. Fluoride exposure can inhibit these survival signalling pathways
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pathway59 plays an important role in the development of renal dam‐
age, which may eventually result in renal histopathological lesions 
and inflammatory responses. Fluoride can also cause renal cell injury 
by reducing the expression of extracellular signal‐regulated kinase 
(ERK) 1/2 in renal tissues,60 activating the M2 macrophage‐TGF‐β1‐
fibroblast/myofibroblast‐collagen synthesis pathway.61 In addition, 
in female mice, intake of fluoride has a certain influence on the kid‐
ney function of their offspring.57

3.4 | Effects of fluoride on the reproductive system

Excessive fluoride has damaging effects on the reproductive sys‐
tem in both men and women. Over the past decade, the effects of 
fluoride on the reproductive system have been the focus of much 
attention from researchers. Excessive fluoride exposure will af‐
fect the formation of male sperm and function of the reproduc‐
tive endocrine system, resulting in decreased male reproductive 
capacity. Animal experiments show that fluoride reduces sperm 

motility, capacitation and the acrosome reaction leading to poor 
fertilization and suppressed embryonic development62; it also 
can significantly increase sperm mitochondrial DNA copy num‐
ber, and reduce nuclear DNA integrity.63 A study indicated that 
fluoride exposure aggravates the degree of reproductive toxic‐
ity, such as sperm density, motility, viability and morphology as 
well as the testicular biochemical parameters in diabetic mice.64 
Fluorosis‐induced spermatogenic cell apoptosis induced through 
the oxidative stress‐mediated JNK and ERK signalling pathways, 
and antioxidants such as VE or lycopene can reduce these reactive 
oxygen species‐induced toxic effects.65 Another study provided 
evidence that fluoride exposure up‐regulated the expression of 
the IL‐17 signalling pathway of spermatogenesis in the testicles 
of male mice by influencing many signalling pathways and genes, 
and that the PI3‐kinase/AKT, MAPKs and cytokines in the TGF‐β 
family contributed to this process.66 Excessive fluoride intake also 
has an influence on the reproductive system of the offspring of 
affected males, causing changes such as vacuolar dystrophy of 

F I G U R E  3   Common alterations in fluorosis‐proliferation and differentiation. The role of fluoride in cell proliferation and differentiation 
is the focus of research into the pathogenesis of skeletal fluorosis. The BMP/Smad and Wnt signalling pathways play important roles in 
the viability and differentiation of osteoblasts. TGFβ receptor 1‐smad3 signalling participates in the mechanism of biphasic modulation of 
osteoclast mode, regulated by fluoride. In addition, the FGF signalling pathway, which activates Akt and Erk1/2pathways, is responsible for 
the balance between cell proliferation and differentiation
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epididymal epithelial cells, vacuolar dystrophy of linear seminal 
cells and necrosis.67

Fluoride also has adverse effects on the female reproductive 
system. A study68 on 18 to 48‐year‐old women living in fluorosis 
areas, fluoride exposure was found to affect the hypothalamus‐pi‐
tuitary‐ovary axis hormone secretion. Animal experiments show 
that sodium fluoride exposure changes the histological structure of 
uterine tissue,69 alters ovarian morphology and apoptosis,70 impairs 
the maturation capacity of porcine oocytes,71 and hampers their de‐
velopment and fertilization.72 Another study provided compelling 
evidence that excessive fluoride intake can reduce the development 
potential of oocytes by inducing oxidative stress and apoptosis in 
the ovary of affected animals.73 In addition, fluoride can disturb 
DNA methylation of neuronatin (NNAT) and reduce oocyte qual‐
ity by impairing glucose transport in porcine oocytes,74 as well as 
causing disturbance of the MMP‐9/tissue inhibitor of metallopro‐
teinase‐1 system,69 all of which may be involved in fluoride‐induced 
reproductive dysfunction in females.

3.5 | Relationship between fluoride and diabetes

One report75 studied the relationship between fluoride and diabe‐
tes in 22 states in the USA, and found that fluoride was significantly 
and positively associated with increases in both the incidence and 
prevalence of diabetes from 2005 to 2010 when accounting for per 
capita consumption of tap water. Another epidemiological study76 
found that higher concentrations of fluoride in drinking water were 
associated with a higher incidence of childhood‐onset type 1 di‐
abetes in the Newfoundland and Labrador provinces of Canada. 

Although there are several limitations to these studies, including 
the fact that diabetes most likely has a multifactorial aetiology, 
even including epigenetic processes, and the difficulty of unequiv‐
ocally stating that these results are the specific consequences of 
water fluoridation, these studies provided new data concerning the 
role of fluoride on rates of diabetes. More comparable and more 
extensive analyses should be completed in other countries and 
areas to replicate the findings presented here. In the past 5 years, 
some investigations have also been carried out into the effects of 
fluoride on diabetic animals. Animal experiments showed that fluo‐
ride exposure increased insulin sensitivity in experimental diabe‐
tes,77 altered glucose homeostasis and led to insulin resistance.78 
Another study79 observed alterations in muscle proteins related to 
glucose homeostasis in rats treated with fluoride.

In summary, over the past 5 years there has been much progress 
in understanding of the pathogenesis of endemic fluorosis. In the 
field of fluoride‐induced stress pathways, signalling pathways and 
apoptosis, in‐depth understanding of its effects at the molecular 
(Summarized in Figures 2, 3, 4) and genetic level80 has increased. In 
addition, some research found that a number of signalling pathways 
involved in fluoride regulation of cell differentiation and function are 
damaged in skeletal tissue. These findings open up new perspectives 
on non‐skeletal fluorosis, and have provided new ideas for further 
molecular research into the mechanism of fluorosis. Although the 
aetiology of endemic fluorosis is clear, its specific pathogenesis is 
inconclusive. The exact pathogenesis remains to be further studied.

In the future, non‐skeletal tissue damage is still an area worth 
exploring. Epidemiological investigations have confirmed the 
effects of fluoride on some systems, such as the cardiovascular 
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system, but further research on the pathogenesis is needed. In 
addition, there is no clear population survey of the relationship 
between fluoride and diabetes, which requires rigorous and large‐
scale epidemiological investigations to further prove. Furthermore, 
the influence of fluorine on offspring is also an interesting research 
direction. One of the weaknesses in previous studies was that the 
dose of fluoride used in animal and cell experiments was generally 
too high (See Supporting Information for more details of the flu‐
oride dose used in animal and cell experiments). Consequently, in 
future, the focus of such research should be: First, is this type of 
damage seen in patients with fluorosis, within the range of doses 
to which the human body may be exposed? Second, if it occurs in 
the human body, is it early primary damage or a late secondary or 
concurrent change? Again, in experimental studies, using only the 
high doses of fluoride in order to cause damage to certain tissues, 
organs or cultured cells would not be acceptable; the changes in 
the tissues and cells at a range of fluoride doses should be ob‐
served. Most importantly, the characteristic change is not sim‐
ply cell apoptosis, necrosis and inhibition of function. Just as the 
characteristic change in skeletal fluorosis is that fluoride affects 
the process of bone turnover, it is necessary to distinguish which 
changes are specific to or characteristic of fluoride, and which are 
only the general toxic effects of high doses of poison. The use of 
gene chip technology and proteomics technology should also be 
considered in order to find breakthroughs. It is also necessary to 
conduct in‐depth study of the different mechanisms of fluoride in 
people with different genetic backgrounds and people with differ‐
ent types of fluorosis (such as drinking water type, coal‐burning 
type and brick‐tea type of endemic fluorosis).
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